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Energy Conversion — Benefit of Nanostructures EPFL
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How can we leverage nanoscale structures to improve device performance or realize new energy conversion devices?

Thermoelectric devices \/
Control of radiative heat transfer
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Liquids and their Transport Properties EPFL

Dilute gases Liquids Solids
o U
® [ <
@)
the number of molecules with centers between n = N/V particle number density

2 e
fomr ng(r)dy = r and r + dr measured relative to a specific molecule

4

If the average potential energy between two particles is ¢ (), then the total
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Interfacial Interactions 3 — Electric Double Layer (EDL) Potential CPFL

Surfaces immersed in liquids are usually charged because of ionization or dissociation of surface groups or adsorption of ions from the solutions onto a previously
uncharged surface. The charges accumulated at the surface are balanced by an equal but oppositely charged region of counter-ions. Some of these counterions are

also bounded to the surface (Stern or Helmholtz layer) while the majority of them form a diffuse electric double layer. An electrostatic potential 1) develops at the
solid-liquid interface.
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We will later discuss how EDL affects transport of ions in nanochannels



From Hydro-electric to Hydro-voltaic EPFL

Hydro-electric: Hydro-voltaic:
kinetic energy of water Solid/liquid interaction

Leveraging water energy conversion at different scales



In This Lecture... EPFL

*  Hydrovoltaic Devices
* Streaming, drawing and waving potentials
* Evaporation-driven devices
* Gradient potential
*  Moisture induced potential
* Osmotic Potential : Blue energy Devices and desalination membranes (flow in nanostructures)
* lon pumps
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Streaming, Drawing and Waving Potentials EPFL
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Streaming, Drawing and Waving Potentials
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Streaming, Drawing and Waving Potentials EPFL
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Streaming, Drawing and Waving Potentials EPFL
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Streaming, Drawing and Waving Potentials
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Streaming, Drawing and Waving Potentials EPFL
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Streaming, Drawing and Waving Potentials
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In This Lecture... EPFL

*  Hydrovoltaic Devices
e Streaming, drawing and waving potentials
* Evaporation-driven devices
* Gradient potential
*  Moisture induced potential
* Osmotic Potential : Blue energy Devices and desalination membranes (flow in nanostructures)
* lon pumps
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Evaporation Driven Devices EPFL
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Hydrophilic carbon-black sustains constant voltage generation under evaporation
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Evaporation Driven Devices
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Evaporation Driven Devices
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Evaporation Driven Devices EPFL

https://www.nature.com/articles/ncomms8346#Sec17 18






Evaporation Driven Devices et
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conditions). d Maximum energy flux and e water saved from evaporation
as a function of RH at cool (pale, 12 °C, 150 W m~2), mild (neutral, 16 °C,
200 W m™2), and warm (dark, 20 °C, 250 W m™2) weather conditions
and three wind speeds: 1.8 (4 mph, solid), 2.7 (6 mph, dashed), and

3.6ms”' (8 mph, dotted)
NATURE COMMUNICATIONS]| 8:617 |DOI: 10.1038/541467-017-00581-w |

=PrL

19



In This Lecture... EPFL

*  Hydrovoltaic Devices
e Streaming, drawing and waving potentials
* Evaporation-driven devices
* Gradient potential
*  Moisture induced potential
* Osmotic Potential : Blue energy Devices and desalination membranes (flow in nanostructures)
* lon pumps
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Moisture-induced Potential EPFL
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Moisture-induced Potential
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Figure 7. Moisture-based WEGs and the working principles. (a) Working mechanism of the moist-electric generator (MEG): (i) water
molecules are first adsorbed onto functional materials with prefabricated chemical gradient; (ii) positively and negatively charged ion pairs
are subsequently dissociated and give birth to movable ions (mainly protons); (iii) protons transport directionally from the high
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Moisture-induced Potential EPFL
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In This Lecture... EPFL

*  Hydrovoltaic Devices
e Streaming, drawing and waving potentials
* Evaporation-driven devices
* Gradient potential
*  Moisture induced potential
* Osmotic Potential : Blue energy Devices and desalination membranes (flow in nanostructures)
* lon pumps
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Osmotic Potential EPFL

B
1z //4; |

b
qt
. E
] =
£ Al ¢ - o) i,
g ¢ é/ £ 1,000 % ¢ 3
ey il 0 : A - 1 a 3
S 0 05 %) ]
- L Surface charge T -18 | T ]
S ) %) K & 100k e SRE
o 05 — 4 8 3 ;
E = 8 B ) B
8 L.o- ir - 13 L ‘
09— “oo T £ 190 100 1,000
Conoentratlon ratio) € .. /C... Concentration ratio, C../C_.,

Flow slip can significantly affect the transport of ions and water along the nanochannel

Diffusio-osmotic streaming current

https://www.nature.com/articles/nature11876 25



Osmotic Potential
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Osmotic Potential — Blue Energy
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Osmotic Potential - Desalination EPFL
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In This Lecture... EPFL

*  Hydrovoltaic Devices
e Streaming, drawing and waving potentials
* Evaporation-driven devices
* Gradient potential
*  Moisture induced potential
* Osmotic Potential : Blue energy Devices and desalination membranes (flow in nanostructures)
* lon pumps
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lon Pumps EpEL
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lon Pumps EpEL
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lon Pumps EpEL
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In This Lecture... EPFL

*  Hydrovoltaic Devices
e Streaming, drawing and waving potentials
* Evaporation-driven devices
* Gradient potential
*  Moisture induced potential
* Osmotic Potential : Blue energy Devices and desalination membranes (flow in nanostructures)
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Outlook — Solid-Water Interactions
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Fig. 1| Fundamental theories of water energy harvesting and water-solid interactions. a, An evolutionary overview of the fundamental theories, from
classical mechanics, thermodynamics and electrostatics, and electrodynamics, to quantum mechanics. Electrokinetics is a more specific theory for
the corresponding electric phenomena, founded on thermodynamics and electrostatics. The timeline follows the shape of the Yellow River. Impartant

advances of harvesting principles pertaining to each theory are listed. b, A water molecule is polarized owing to electron transfer from hydrogen to oxygen

(from blue to red). ¢, lllustration of bulk water on a solid surface. In bulk water, each water molecule attracts four neighbours arranged in a tetrahedral

coordination via hydrogen bonding (inset). The molecule is evaporated near the water surface when its hydrogen bonds are broken. d, lllustration of proton

transport (indicated by curved tail arrows) near a solid surface terminated with hydroxyl groups. The dotted blue line is a typical water density profile
near a solid surface. e, lons dominate the interaction between aqueous solution and solid. The cations and anions are illustrated by blue and grey balls,
respectively. f, Each ion is hydrated by attracting six water molecules. g, An electric double layer forms at the solution-solid interface, consisting of Stern
layer and diffusion layer. The boundary between the diffusion and Stern layers is the shear plane, at which the potential is called the zeta potential. The

blue line gives the electric potential profile near the interface.

https://www.nature.com/articles/s41427-020-0203-1

=PrL

34



Outlook — Energy Conversion Potential EPFL
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Figure 1. Global Energy Source and Consumption
The global average power density of energy source and human energy consumption (x3,000). Even
if only 1% of the energy adsorbed by water can be utilized with an efficiency of 1%, it could provide

nearly 1/3 of the global energy consumption by humans.
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Outlook - Large-scale Utilities EPFL
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Getting the most energy out of water and making best use of water surfaces!
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Outlook - Large-scale Utilities
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Getting the most energy out of water and making best use of water surfaces!

https://www.nature.com/articles/s41570-017-0091
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Outlook - Portable devices EPFL
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Combining solar purification/desalination with electricity production!
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